Mathematics > Numerical Analysis
[Submitted on 8 Apr 2018 (v1), last revised 11 Nov 2018 (this version, v2)]
Title:Randomized subspace iteration: Analysis of canonical angles and unitarily invariant norms
View PDFAbstract:This paper is concerned with the analysis of the randomized subspace iteration for the computation of low-rank approximations. We present three different kinds of bounds. First, we derive both bounds for the canonical angles between the exact and the approximate singular subspaces. Second, we derive bounds for the low-rank approximation in any unitarily invariant norm (including the Schatten-p norm). This generalizes the bounds for Spectral and Frobenius norms found in the literature. Third, we present bounds for the accuracy of the singular values. The bounds are structural in that they are applicable to any starting guess, be it random or deterministic, that satisfies some minimal assumptions. Specialized bounds are provided when a Gaussian random matrix is used as the starting guess. Numerical experiments demonstrate the effectiveness of the proposed bounds.
Submission history
From: Arvind Saibaba [view email][v1] Sun, 8 Apr 2018 02:22:00 UTC (226 KB)
[v2] Sun, 11 Nov 2018 19:19:59 UTC (119 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.