Mathematics > Analysis of PDEs
[Submitted on 22 Apr 2018]
Title:Resonant Hamiltonian systems associated to the one-dimensional nonlinear Schrödinger equation with harmonic trapping
View PDFAbstract:We study two resonant Hamiltonian systems on the phase space $L^2(\mathbb{R} \rightarrow \mathbb{C})$: the quintic one-dimensional continuous resonant equation, and a cubic resonant system that has appeared in the literature as a modified scattering limit for an NLS equation with cigar shaped trap. We prove that these systems approximate the dynamics of the quintic and cubic one-dimensional NLS with harmonic trapping in the small data regime on long times scales. We then pursue a thorough study of the dynamics of the resonant systems themselves. Our central finding is that these resonant equations fit into a larger class of Hamiltonian systems that have many striking dynamical features: non-trivial symmetries such as invariance under the Fourier transform and the flow of the linear Scrödinger equation with harmonic trapping, a robust wellposedness theory, including global wellposedness in $L^2$ and all higher $L^2$ Sobolev spaces, and an infinite family of orthogonal, explicit stationary wave solutions in the form of the Hermite functions.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.