Mathematics > Numerical Analysis
[Submitted on 23 Apr 2018]
Title:NURBS-SEM: a hybrid spectral element method on NURBS maps for the solution of elliptic PDEs on surfaces
View PDFAbstract:Non Uniform Rational B-spline (NURBS) patches are a standard way to describe complex geometries in Computer Aided Design tools, and have gained a lot of popularity in recent years also for the approximation of partial differential equations, via the Isogeometric Analysis (IGA) paradigm. However, spectral accuracy in IGA is limited to relatively small NURBS patch degrees (roughly p <= 8), since local condition numbers grow very rapidly for higher degrees. On the other hand, traditional Spectral Element Methods (SEM) guarantee spectral accuracy but often require complex and expensive meshing techniques, like transfinite mapping, that result anyway in inexact geometries. In this work we propose a hybrid NURBS-SEM approximation method that achieves spectral accuracy and maintains exact geometry representation by combining the advantages of IGA and SEM.
As a prototypical problem on non trivial geometries, we consider the Laplace--Beltrami and Allen--Cahn equations on a surface. On these problems, we present a comparison of several instances of NURBS-SEM with the standard Galerkin and Collocation Isogeometric Analysis (IGA).
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.