Mathematics > Analysis of PDEs
[Submitted on 23 Apr 2018]
Title:Approximate conditions admitted by classes of the Lagrangian ${\cal L}=\frac12\left(-u'^2+u^2\right)+ε^iG_i(u, u^\prime, u^{\prime\prime})$
View PDFAbstract:We investigate a class of Lagrangians that admit a type of perturbed harmonic oscillator which occupies a special place in the literature surrounding perturbation theory. We establish explicit and generalized geometric conditions for the symmetry determining equations. The explicit scheme provided can be followed and specialized for any concrete perturbed differential equation possessing the Lagrangian. A systematic solution of the conditions generate nontrivial approximate symmetries and transformations. Detailed cases are discussed to illustrate the relevance of the conditions, namely (a) $G_1$ as a quadratic polynomial, (b) the Klein-Gordon equation of a particle in the context of Generalized Uncertainty Principle and (c) an orbital equation from an embedded Reissner-Nordström black hole.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.