Mathematics > General Topology
[Submitted on 23 Apr 2018]
Title:Complexities and Representations of F-Borel Spaces
View PDFAbstract:We investigate the $\mathcal F$-Borel complexity of topological spaces in their different compactifcations. We provide a simple proof of the fact that a space can have arbitrarily many different complexities in different compactifications. We also develop a theory of representations of $\mathcal F$-Borel sets, and show how to apply this theory to prove that the complexity of hereditarily Lindelöf spaces is absolute (that is, it is the same in every compactification). We use these representations to characterize the complexities attainable by a specific class of topological spaces. This provides an alternative proof of the first result, and implies the existence of a space with non-absolute additive complexity. We discuss the method used by Talagrand to construct the first example of a space with non-absolute complexity, hopefully providing an explanation which is more accessible than the original one. We also discuss the relation of complexity and local complexity, and show how to construct amalgamation-like compactifications.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.