Mathematics > Functional Analysis
[Submitted on 20 Apr 2018]
Title:Remarks on Banach spaces determined by their finite dimensional subspaces
View PDFAbstract:A separable Banach space $X$ is said to be finitely determined if for each separable space $Y$ such that $X$ is finitely representable (f.r.) in $Y$ and $Y$ is f.r. in $X$ then $Y$ is isometric to $X$. We provide a direct proof (without model theory) of the fact that every finitely determined space $X$ (isometrically) contains every (separable) space $Y$ which is finitely representable in $X$. We also point out how a similar argument proves the Krivine-Maurey theorem on stable Banach spaces, and give the model theoretic interpretations of some results.
Current browse context:
math.FA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.