Mathematics > Functional Analysis
[Submitted on 23 Apr 2018]
Title:The twofold Ellis-Gohberg inverse problem in an abstract setting and applications
View PDFAbstract:In this paper we consider a twofold Ellis-Gohberg type inverse problem in an abstract *-algebraic setting. Under natural assumptions, necessary and sufficient conditions for the existence of a solution are obtained, and it is shown that in case a solution exists, it is unique. The main result relies strongly on an inversion formula for a $2\times 2$ block operator matrix whose off diagonal entries are Hankel operators while the diagonal entries are identity operators. Various special cases are presented, including the cases of matrix-valued $L^1$-functions on the real line and matrix-valued Wiener functions on the unit circle of the complex plane. For the latter case, it is shown how the results obtained in an earlier publication by the authors can be recovered.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.