Mathematics > Functional Analysis
[Submitted on 24 Apr 2018]
Title:Graphs with sparsity order at most two: The complex case
View PDFAbstract:The sparsity order of a (simple undirected) graph is the highest possible rank (over ${\mathbb R}$ or ${\mathbb C}$) of the extremal elements in the matrix cone that consists of positive semidefinite matrices with prescribed zeros on the positions that correspond to non-edges of the graph (excluding the diagonal entries). The graphs of sparsity order 1 (for both ${\mathbb R}$ and ${\mathbb C}$) correspond to chordal graphs, those graphs that do not contain a cycle of length greater than three, as an induced subgraph, or equivalently, is a clique-sum of cliques. There exist analogues, though more complicated, characterizations of the case where the sparsity order is at most 2, which are different for ${\mathbb R}$ and ${\mathbb C}$. The existing proof for the complex case, is based on the result for the real case. In this paper we provide a more elementary proof of the characterization of the graphs whose complex sparsity order is at most two. Part of our proof relies on a characterization of the $\{P_4,\overline{K}_3\}$-free graphs, with $P_4$ the path of length 3 and $\overline{K}_3$ the stable set of cardinality 3, and of the class of clique-sums of such graphs.
Current browse context:
math.FA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.