Mathematics > Analysis of PDEs
[Submitted on 24 Apr 2018]
Title:Almost sure scattering for the radial energy critical nonlinear wave equation in three dimensions
View PDFAbstract:We study the Cauchy problem for the radial energy critical nonlinear wave equation in three dimensions. Our main result proves almost sure scattering for radial initial data below the energy space. In order to preserve the spherical symmetry of the initial data, we construct a radial randomization that is based on annular Fourier multipliers. We then use a refined radial Strichartz estimate to prove probabilistic Strichartz estimates for the random linear evolution. The main new ingredient in the analysis of the nonlinear evolution is an interaction flux estimate between the linear and nonlinear components of the solution. We then control the energy of the nonlinear component by a triple bootstrap argument involving the energy, the Morawetz term, and the interaction flux estimate.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.