Mathematics > Analysis of PDEs
[Submitted on 27 Apr 2018 (v1), last revised 16 Jul 2018 (this version, v2)]
Title:Green functions of conormal derivative problems for stationary Stokes system
View PDFAbstract:We study Green functions for stationary Stokes systems satisfying the conormal derivative boundary condition. We establish existence, uniqueness, and various estimates for the Green function under the assumption that weak solutions of the Stokes system are continuous in the interior of the domain. Also, we establish the global pointwise bound for the Green function under the additional assumption that weak solutions of the conormal derivative problem for the Stokes system are locally bounded up to the boundary. We provide some examples satisfying such continuity and boundedness properties.
Submission history
From: Jongkeun Choi [view email][v1] Fri, 27 Apr 2018 16:53:53 UTC (20 KB)
[v2] Mon, 16 Jul 2018 14:51:56 UTC (22 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.