Mathematics > Number Theory
[Submitted on 8 May 2018]
Title:Fields of definition of finite hypergeometric functions
View PDFAbstract:Finite hypergeometric functions are functions of a finite field ${\bf F}_q$ to ${\bf C}$. They arise as Fourier expansions of certain twisted exponential sums and were introduced independently by John Greene and Nick Katz in the 1980's. They have many properties in common with their analytic counterparts, the hypergeometric functions. One restriction in the definition of finite hypergeometric functions is that the hypergeometric parameters must be rational numbers whose denominators divide $q-1$. In this note we use the symmetry in the hypergeometric parameters and an extension of the exponential sums to circumvent this problem as much as posssible.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.