Mathematics > Number Theory
[Submitted on 23 May 2018 (v1), last revised 16 Jul 2018 (this version, v3)]
Title:Sum-product estimates over arbitrary finite fields
View PDFAbstract:In this paper we prove some results on sum-product estimates over arbitrary finite fields. More precisely, we show that for sufficiently small sets $A\subset \mathbb{F}_q$ we have \[|(A-A)^2+(A-A)^2|\gg |A|^{1+\frac{1}{21}}.\] This can be viewed as the Erdős distinct distances problem for Cartesian product sets over arbitrary finite fields. We also prove that \[\max\{|A+A|, |A^2+A^2|\}\gg |A|^{1+\frac{1}{42}}, ~|A+A^2|\gg |A|^{1+\frac{1}{84}}.\]
Submission history
From: Thang Pham [view email][v1] Wed, 23 May 2018 00:03:42 UTC (9 KB)
[v2] Tue, 29 May 2018 21:59:31 UTC (9 KB)
[v3] Mon, 16 Jul 2018 03:32:01 UTC (10 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.