Mathematics > Algebraic Geometry
[Submitted on 23 May 2018 (v1), last revised 26 Dec 2018 (this version, v2)]
Title:Categorical smooth compactifications and generalized Hodge-to-de Rham degeneration
View PDFAbstract:We disprove two (unpublished) conjectures of Kontsevich which state generalized versions of categorical Hodge-to-de Rham degeneration for smooth and for proper DG categories (but not smooth and proper, in which case degeneration is proved by Kaledin \cite{Ka}). In particular, we show that there exists a minimal $10$-dimensional $A_{\infty}$-algebra over a field of characteristic zero, for which the supertrace of $\mu_3$ on the second argument is non-zero.
As a byproduct, we obtain an example of a homotopically finitely presented DG category (over a field of characteristic zero) that does not have a smooth categorical compactification, giving a negative answer to a question of Toën. This can be interpreted as a lack of resolution of singularities in the noncommutative setup.
We also obtain an example of a proper DG category which does not admit a categorical resolution of singularities in the terminology of Kuznetsov and Lunts \cite{KL} (that is, it cannot be embedded into a smooth and proper DG category).
Submission history
From: Alexander Efimov [view email][v1] Wed, 23 May 2018 16:58:19 UTC (20 KB)
[v2] Wed, 26 Dec 2018 20:50:56 UTC (21 KB)
Current browse context:
math.AG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.