Mathematics > Combinatorics
[Submitted on 5 Aug 2018 (v1), last revised 6 Aug 2019 (this version, v3)]
Title:On the number of edges in some graphs
View PDFAbstract:In 1975, P. Erdős proposed the problem of determining the maximum number $f(n)$ of edges in a graph with $n$ vertices in which any two cycles are of different lengths. The sequence $(c_1,c_2,\cdots,c_n)$ is the cycle length distribution of a graph $G$ of order $n$ where $c_i$ is the number of cycles of length $i$ in $G$. Let $f(a_1,a_2,\cdots, a_n)$ denote the maximum possible number of edges in a graph which satisfies $c_i\leq a_i$ where $a_i$ is a nonnegative integer. In 1991, Shi posed the problem of determining $f(a_1,a_2,\cdots,a_n)$ which extended the problem due to Erdős, it is clear that $f(n)=f(1,1,\cdots,1)$. Let $g(n,m)=f(a_1,a_2,\cdots,a_n),$ $a_i=1$ for all $i/m$ be integer, $a_i=0$ for all $i/m$ be not integer. It is clear that $f(n)=g(n,1)$. We prove that $\liminf_{n \to \infty} {f(n)-n \over \sqrt n} \geq \sqrt {2 + \frac{40}{99}},$ which is better than the previous bounds $\sqrt 2$ (Shi, 1988), $\sqrt {2 + \frac{7654}{19071}}$ (Lai, 2017). We show that $\liminf_{n \rightarrow \infty} {g(n,m)-n\over \sqrt \frac{n}{m}} > \sqrt {2.444},$ for all even integers $m$. We make the following conjecture: $\liminf_{n \to \infty} {f(n)-n \over \sqrt n} > \sqrt {2.444}.$
Submission history
From: Lai Chunhui [view email][v1] Sun, 5 Aug 2018 01:34:52 UTC (21 KB)
[v2] Sun, 30 Sep 2018 13:14:43 UTC (21 KB)
[v3] Tue, 6 Aug 2019 09:27:49 UTC (21 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.