Mathematics > Numerical Analysis
[Submitted on 16 Oct 2018]
Title:A well-posed surface currents and charges system for electromagnetism in dielectric media
View PDFAbstract:The free space Maxwell dielectric problem can be reduced to a system of surface integral equations (SIE). A numerical formulation for the Maxwell dielectric problem using an SIE system presents two key advantages: first, the radiation condition at infinity is exactly satisfied, and second, there is no need to artificially define a truncated domain. Consequently, these SIE systems have generated much interest in physics, electrical engineering, and mathematics, and many SIE formulations have been proposed over time.
In this article we introduce a new SIE formulation which is in the desirable operator form identity plus compact, is well-posed, and remains well-conditioned as the frequency tends to zero. The unknowns in the formulation are three dimensional vector fields on the boundary of the dielectric body. The SIE studied in this paper is derived from a formulation developed in earlier work by some of the authors~\cite{ganesh2014all}. Our initial formulation utilized linear constraints to obtain a uniquely solvable system for all frequencies. The new SIE introduced and analyzed in this article combines the integral equations from \cite{ganesh2014all} with new constraints. We show that the new system is in the operator form identity plus compact in a particular functional space, and we prove well-posedness at all frequencies and low-frequency stability of the new SIE.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.