Mathematics > Optimization and Control
[Submitted on 4 Dec 2018 (v1), last revised 13 Feb 2019 (this version, v3)]
Title:Exploration versus exploitation in reinforcement learning: a stochastic control approach
View PDFAbstract:We consider reinforcement learning (RL) in continuous time and study the problem of achieving the best trade-off between exploration of a black box environment and exploitation of current knowledge. We propose an entropy-regularized reward function involving the differential entropy of the distributions of actions, and motivate and devise an exploratory formulation for the feature dynamics that captures repetitive learning under exploration. The resulting optimization problem is a revitalization of the classical relaxed stochastic control. We carry out a complete analysis of the problem in the linear--quadratic (LQ) setting and deduce that the optimal feedback control distribution for balancing exploitation and exploration is Gaussian. This in turn interprets and justifies the widely adopted Gaussian exploration in RL, beyond its simplicity for sampling. Moreover, the exploitation and exploration are captured, respectively and mutual-exclusively, by the mean and variance of the Gaussian distribution. We also find that a more random environment contains more learning opportunities in the sense that less exploration is needed. We characterize the cost of exploration, which, for the LQ case, is shown to be proportional to the entropy regularization weight and inversely proportional to the discount rate. Finally, as the weight of exploration decays to zero, we prove the convergence of the solution of the entropy-regularized LQ problem to the one of the classical LQ problem.
Submission history
From: Haoran Wang [view email][v1] Tue, 4 Dec 2018 17:46:06 UTC (52 KB)
[v2] Tue, 15 Jan 2019 21:06:10 UTC (57 KB)
[v3] Wed, 13 Feb 2019 16:33:26 UTC (60 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.