Mathematics > Algebraic Geometry
[Submitted on 7 Dec 2018]
Title:Gauss-Manin Lie algebra of mirror elliptic K3 surfaces
View PDFAbstract:We study mirror symmetry of families of elliptic K3 surfaces with elliptic fibers of type $E_6,~E_7$ and $E_8$. We consider a moduli space $\mathsf{T}$ of the mirror K3 surfaces enhanced with the choice of differential forms. We show that coordinates on $\mathsf{T}$ are given by the ring of quasi modular forms in two variables, with modular groups adapted to the fiber type. We furthermore introduce an algebraic group $\mathsf{G}$ which acts on $\mathsf{T}$ from the right and construct its Lie algebra $\mathrm{Lie}(\mathsf{G})$. We prove that the extended Lie algebra generated by $\mathrm{Lie}(\mathsf{G})$ together with modular vector fields on $\mathsf{T}$ is isomorphic to $\mathrm{sl}_2(\mathbb{C})\oplus\mathrm{sl}_2(\mathbb{C})$.
Current browse context:
math.AG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.