Mathematics > Optimization and Control
[Submitted on 17 Dec 2018 (v1), last revised 4 Apr 2019 (this version, v2)]
Title:A Unified Algorithmic Framework of Symmetric Gauss-Seidel Decomposition based Proximal ADMMs for Convex Composite Programming
View PDFAbstract:This paper aims to present a fairly accessible generalization of several symmetric Gauss-Seidel decomposition based multi-block proximal alternating direction methods of multipliers (ADMMs) for convex composite optimization problems. The proposed method unifies and refines many constructive techniques that were separately developed for the computational efficiency of multi-block ADMM-type algorithms. Specifically, the majorized augmented Lagrangian functions, the indefinite proximal terms, the inexact symmetric Gauss-Seidel decomposition theorem, the tolerance criteria of approximately solving the subproblems, and the large dual step-lengths, are all incorporated in one algorithmic framework, which we named as sGS-imiPADMM. From the popularity of convergent variants of multi-block ADMMs in recent years, especially for high-dimensional multi-block convex composite conic programming problems, the unification presented in this paper, as well as the corresponding convergence results, may have the great potential of facilitating the implementation of many multi-block ADMMs in various problem settings.
Submission history
From: Ning Zhang [view email][v1] Mon, 17 Dec 2018 02:00:13 UTC (21 KB)
[v2] Thu, 4 Apr 2019 08:35:52 UTC (21 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.