Mathematics > Statistics Theory
[Submitted on 27 Nov 2018]
Title:Hybrid estimation for ergodic diffusion processes based on noisy discrete observations
View PDFAbstract:We consider parametric estimation for ergodic diffusion processes with noisy sampled data based on the hybrid method, that is, the multi-step estimation with the initial Bayes type estimators. In order to select proper initial values for optimisation of the quasi likelihood function of ergodic diffusion processes with noisy observations, we construct the initial Bayes type estimator based on the local means of the noisy observations. The asymptotic properties of the initial Bayes type estimators and the hybrid multi-step estimators with the initial Bayes type estimators are shown, and a concrete example and the simulation results are given.
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.