Mathematics > Metric Geometry
[Submitted on 18 Dec 2018]
Title:Bi-Lipschitz embeddings of Heisenberg submanifolds into Euclidean spaces
View PDFAbstract:The Heisenberg group $\mathbb{H}$ equipped with a sub-Riemannian metric is one of the most well known examples of a doubling metric space which does not admit a bi-Lipschitz embedding into any Euclidean space. In this paper we investigate which \textit{subsets} of $\mathbb{H}$ bi-Lipschitz embed into Euclidean spaces. We show that there exists a universal constant $L>0$ such that lines $L$-bi-Lipschitz embed into $\mathbb{R}^3$ and planes $L$-bi-Lipschitz embed into $\mathbb{R}^4$. Moreover, $C^{1,1}$ $2$-manifolds without characteristic points as well as all $C^{1,1}$ $1$-manifolds locally $L$-bi-Lipschitz embed into $\mathbb{R}^4$ where the constant $L$ is again universal. We also consider several examples of compact surfaces with characteristic points and we prove, for example, that Korányi spheres bi-Lipschitz embed into $\mathbb{R}^4$ with a uniform constant. Finally, we show that there exists a compact, porous subset of $\mathbb{H}$ which does not admit a bi-Lipschitz embedding into any Euclidean space.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.