Mathematics > Analysis of PDEs
[Submitted on 18 Dec 2018]
Title:An elementary approach to the dimension of measures satisfying a first-order linear PDE constraint
View PDFAbstract:We give a simple criterion on the set of probability tangent measures $\mathrm{Tan}(\mu,x)$ of a positive Radon measure $\mu$, which yields lower bounds on the Hausdorff dimension of $\mu$. As an application, we give an elementary and purely algebraic proof of the sharp Hausdorff dimension lower bounds for first-order linear PDE-constrained measures; bounds for closed (measure) differential forms and normal currents are further discussed. A weak structure theorem in the spirit of [Ann. Math. 184(3) (2016), pp. 1017-1039] is also discussed for such measures.
Submission history
From: Adolfo Arroyo-Rabasa [view email][v1] Tue, 18 Dec 2018 20:29:31 UTC (21 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.