Mathematics > Rings and Algebras
[Submitted on 18 Dec 2018 (v1), last revised 2 Nov 2019 (this version, v3)]
Title:Deleting or adding arrows of a bound quiver algebra and Hochschild (co)homology
View PDFAbstract:We describe how the Hochschild (co)homology of a bound quiver algebra changes when adding or deleting arrows to the quiver. The main tools are relative Hochschild (co)homology, the Jacobi-Zariski long exact sequence obtained by A. Kaygun and a one step relative projective resolution of a tensor algebra.
Submission history
From: Claude Cibils [view email][v1] Tue, 18 Dec 2018 21:51:46 UTC (20 KB)
[v2] Tue, 18 Jun 2019 16:27:56 UTC (13 KB)
[v3] Sat, 2 Nov 2019 14:04:06 UTC (13 KB)
Current browse context:
math.RA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.