Mathematics > Optimization and Control
[Submitted on 20 Dec 2018 (v1), last revised 14 May 2019 (this version, v4)]
Title:First-order algorithms converge faster than $O(1/k)$ on convex problems
View PDFAbstract:It is well known that both gradient descent and stochastic coordinate descent achieve a global convergence rate of $O(1/k)$ in the objective value, when applied to a scheme for minimizing a Lipschitz-continuously differentiable, unconstrained convex function. In this work, we improve this rate to $o(1/k)$. We extend the result to proximal gradient and proximal coordinate descent on regularized problems to show similar $o(1/k)$ convergence rates. The result is tight in the sense that a rate of $O(1/k^{1+\epsilon})$ is not generally attainable for any $\epsilon>0$, for any of these methods.
Submission history
From: Ching-Pei Lee [view email][v1] Thu, 20 Dec 2018 11:13:24 UTC (35 KB)
[v2] Sat, 29 Dec 2018 03:09:44 UTC (16 KB)
[v3] Thu, 24 Jan 2019 13:46:27 UTC (30 KB)
[v4] Tue, 14 May 2019 02:50:44 UTC (17 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.