Mathematics > Numerical Analysis
[Submitted on 20 Dec 2018 (v1), last revised 21 Oct 2019 (this version, v2)]
Title:On the condition number of Vandermonde matrices with pairs of nearly-colliding nodes
View PDFAbstract:We prove upper and lower bounds for the spectral condition number of rectangular Vandermonde matrices with nodes on the complex unit circle. The nodes are "off the grid", pairs of nodes nearly collide, and the studied condition number grows linearly with the inverse separation distance. Such growth rates are known in greater generality if all nodes collide or for groups of colliding nodes. For pairs of nodes, we provide reasonable sharp constants that are independent of the number of nodes as long as non-colliding nodes are well-separated.
Submission history
From: Dominik Nagel [view email][v1] Thu, 20 Dec 2018 15:47:25 UTC (743 KB)
[v2] Mon, 21 Oct 2019 18:09:11 UTC (662 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.