Mathematics > Dynamical Systems
[Submitted on 21 Dec 2018 (v1), last revised 15 Aug 2019 (this version, v2)]
Title:Rigidity sequences, Kazhdan sets and group topologies on the integers
View PDFAbstract:We study the relationships between three different classes of sequences (or sets) of integers, namely rigidity sequences, Kazhdan sequences (or sets) and nullpotent sequences. We prove that rigidity sequences are non-Kazhdan and nullpotent, and that all other implications are false. In particular, we show by probabilistic means that there exist sequences of integers which are both nullpotent and Kazhdan. Moreover, using Baire category methods, we provide general criteria for a sequence of integers to be a rigidity sequence. Finally, we give a new proof of the existence of rigidity sequences which are dense in $\mathbb{Z}$ for the Bohr topology, a result originally due to Griesmer.
Submission history
From: Sophie Grivaux [view email][v1] Fri, 21 Dec 2018 09:38:47 UTC (45 KB)
[v2] Thu, 15 Aug 2019 19:53:42 UTC (46 KB)
Current browse context:
math.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.