Computer Science > Systems and Control
[Submitted on 23 Dec 2018]
Title:Nonlinear Robust Filtering of Sampled-Data Dynamical Systems
View PDFAbstract:This work is concerned with robust filtering of nonlinear sampled-data systems with and without exact discrete-time models. A linear matrix inequality (LMI) based approach is proposed for the design of robust $H_{\infty}$ observers for a class of Lipschitz nonlinear systems. Two type of systems are considered, Lipschitz nonlinear discrete-time systems and Lipschitz nonlinear sampled-data systems with Euler approximate discrete-time models. Observer convergence when the exact discrete-time model of the system is available is shown. Then, practical convergence of the proposed observer is proved using the Euler approximate discrete-time model. As an additional feature, maximizing the admissible Lipschitz constant, the solution of the proposed LMI optimization problem guaranties robustness against some nonlinear uncertainty. The robust H_infty observer synthesis problem is solved for both cases. The maximum disturbance attenuation level is achieved through LMI optimization. At the end, a path to extending the results to higher-order approximate discretizations is provided.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.