Computer Science > Machine Learning
[Submitted on 25 Dec 2018]
Title:Overparameterized Nonlinear Learning: Gradient Descent Takes the Shortest Path?
View PDFAbstract:Many modern learning tasks involve fitting nonlinear models to data which are trained in an overparameterized regime where the parameters of the model exceed the size of the training dataset. Due to this overparameterization, the training loss may have infinitely many global minima and it is critical to understand the properties of the solutions found by first-order optimization schemes such as (stochastic) gradient descent starting from different initializations. In this paper we demonstrate that when the loss has certain properties over a minimally small neighborhood of the initial point, first order methods such as (stochastic) gradient descent have a few intriguing properties: (1) the iterates converge at a geometric rate to a global optima even when the loss is nonconvex, (2) among all global optima of the loss the iterates converge to one with a near minimal distance to the initial point, (3) the iterates take a near direct route from the initial point to this global optima. As part of our proof technique, we introduce a new potential function which captures the precise tradeoff between the loss function and the distance to the initial point as the iterations progress. For Stochastic Gradient Descent (SGD), we develop novel martingale techniques that guarantee SGD never leaves a small neighborhood of the initialization, even with rather large learning rates. We demonstrate the utility of our general theory for a variety of problem domains spanning low-rank matrix recovery to neural network training. Underlying our analysis are novel insights that may have implications for training and generalization of more sophisticated learning problems including those involving deep neural network architectures.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.