Mathematics > Algebraic Geometry
[Submitted on 29 Dec 2018 (v1), last revised 10 Jun 2019 (this version, v2)]
Title:Differential signatures of algebraic curves
View PDFAbstract:In this paper, we adapt the differential signature construction to the equivalence problem for complex plane algebraic curves under the actions of the projective group and its subgroups. Given an action of a group $G$, a signature map assigns to a plane algebraic curve another plane algebraic curve (a signature curve) in such a way that two generic curves have the same signatures if and only if they are $G$-equivalent. We prove that for any $G$-action, there exists a pair of rational differential invariants, called classifying invariants, that can be used to construct signatures. We derive a formula for the degree of a signature curve in terms of the degree of the original curve, the size of its symmetry group and some quantities depending on a choice of classifying invariants. For the full projective group, as well as for its affine, special affine and special Euclidean subgroups, we give explicit sets of rational classifying invariants and derive a formula for the degree of the signature curve of a generic curve as a quadratic function of the degree of the original curve. We show that this generic degree is the sharp upper bound.
Submission history
From: Michael Ruddy [view email][v1] Sat, 29 Dec 2018 15:54:54 UTC (73 KB)
[v2] Mon, 10 Jun 2019 14:30:45 UTC (77 KB)
Current browse context:
math.AG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.