Computer Science > Robotics
[Submitted on 20 Mar 2021 (v1), last revised 29 Jul 2021 (this version, v2)]
Title:An Efficient Calibration Method for Triaxial Gyroscope
View PDFAbstract:This paper presents an efficient servomotor-aided calibration method for the triaxial gyroscope. The entire calibration process only requires approximately one minute, and does not require high-precision equipment. This method is based on the idea that the measurement of the gyroscope should be equal to the rotation speed of the servomotor. A six-observation experimental design is proposed to minimize the maximum variance of the estimated scale factors and biases. In addition, a fast converging recursive linear least square estimation method is presented to reduce computational complexity. The simulation results reflect the robustness of the calibration method under normal and extreme conditions. We experimentally demonstrate the feasibility of the proposed method on a robot arm, and implement the method on a microcontroller. We verify the calibration results of the proposed method by comparing with a traditional turntable approach, and the experiment indicates that the results of these two methods are comparable. By comparing the calibrated low-cost gyroscope reading with the reading from a high-precision gyroscope, we can conclude that our method significantly increases the gyroscope's accuracy.
Submission history
From: Li Wang [view email][v1] Sat, 20 Mar 2021 04:46:45 UTC (3,537 KB)
[v2] Thu, 29 Jul 2021 06:16:22 UTC (4,167 KB)
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.