Computer Science > Robotics
[Submitted on 25 May 2021 (v1), last revised 5 Oct 2021 (this version, v2)]
Title:A Closed-Loop Linear Covariance Framework for Vehicle Path Planning in a Static Uncertain Obstacle Fiel
View PDFAbstract:Path planning in an uncertain environment is a key enabler of true vehicle autonomy. Over the past two decades, numerous approaches have been developed to account for errors in the vehicle path while navigating complex and often uncertain environments. An important capability of such planning is the prediction of vehicle dispersion covariances about a candidate path. This work develops a new closed-loop linear covariance (CL-LinCov) framework applicable to a wide range of autonomous system architectures. Important features of the developed framework include the (1) separation of high-level guidance from low-level control, (2) support for output-feedback controllers with internal states, dynamics, and output, and (3) multi-use continuous sensors for navigation state propagation, guidance, and feedback control. The closed-loop nature of the framework preserves the important coupling between the system dynamics, exogenous disturbances, and the guidance, navigation, and control algorithms. The developed framework is applied to a simplified model of an unmanned aerial vehicle and validated by comparison via Monte Carlo analysis. The utility of the CL-LinCov information is illustrated by its application to path planning in a static, uncertain obstacle field via a modified version of the Rapidly Exploring Random Tree algorithm.
Submission history
From: Randall Christensen [view email][v1] Tue, 25 May 2021 15:02:07 UTC (14,774 KB)
[v2] Tue, 5 Oct 2021 18:35:58 UTC (15,182 KB)
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.