Computer Science > Robotics
[Submitted on 1 Aug 2021 (v1), last revised 26 Feb 2024 (this version, v2)]
Title:Transformer-based deep imitation learning for dual-arm robot manipulation
View PDF HTML (experimental)Abstract:Deep imitation learning is promising for solving dexterous manipulation tasks because it does not require an environment model and pre-programmed robot behavior. However, its application to dual-arm manipulation tasks remains challenging. In a dual-arm manipulation setup, the increased number of state dimensions caused by the additional robot manipulators causes distractions and results in poor performance of the neural networks. We address this issue using a self-attention mechanism that computes dependencies between elements in a sequential input and focuses on important elements. A Transformer, a variant of self-attention architecture, is applied to deep imitation learning to solve dual-arm manipulation tasks in the real world. The proposed method has been tested on dual-arm manipulation tasks using a real robot. The experimental results demonstrated that the Transformer-based deep imitation learning architecture can attend to the important features among the sensory inputs, therefore reducing distractions and improving manipulation performance when compared with the baseline architecture without the self-attention mechanisms.
Submission history
From: Heecheol Kim [view email][v1] Sun, 1 Aug 2021 07:42:39 UTC (3,617 KB)
[v2] Mon, 26 Feb 2024 10:02:26 UTC (3,783 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.