Computer Science > Robotics
[Submitted on 6 Aug 2021 (v1), last revised 28 Jun 2023 (this version, v2)]
Title:Probabilistic motion planning for non-Euclidean and multi-vehicle problems
View PDFAbstract:Trajectory planning tasks for non-holonomic or collaborative systems are naturally modeled by state spaces with non-Euclidean metrics. However, existing proofs of convergence for sample-based motion planners only consider the setting of Euclidean state spaces. We resolve this issue by formulating a flexible framework and set of assumptions for which the widely-used PRM*, RRT, and RRT* algorithms remain asymptotically optimal in the non-Euclidean setting. The framework is compatible with collaborative trajectory planning: given a fleet of robotic systems that individually satisfy our assumptions, we show that the corresponding collaborative system again satisfies the assumptions and therefore has guaranteed convergence for the trajectory-finding methods. Our joint state space construction builds in a coupling parameter $1\leq p\leq \infty$, which interpolates between a preference for minimizing total energy at one extreme and a preference for minimizing the travel time at the opposite extreme. We illustrate our theory with trajectory planning for simple coupled systems, fleets of Reeds-Shepp vehicles, and a highly non-Euclidean fractal space.
Submission history
From: Anton Lukyanenko [view email][v1] Fri, 6 Aug 2021 16:14:35 UTC (4,345 KB)
[v2] Wed, 28 Jun 2023 17:12:56 UTC (3,714 KB)
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.