Computer Science > Robotics
[Submitted on 9 Aug 2021 (v1), last revised 11 Aug 2021 (this version, v2)]
Title:Organization and Understanding of a Tactile Information Dataset TacAct During Physical Human-Robot Interactions
View PDFAbstract:Advanced service robots require superior tactile intelligence to guarantee human-contact safety and to provide essential supplements to visual and auditory information for human-robot interaction, especially when a robot is in physical contact with a human. Tactile intelligence is an essential capability of perception and recognition from tactile information, based on the learning from a large amount of tactile data and the understanding of the physical meaning behind the data. This report introduces a recently collected and organized dataset "TacAct" that encloses real-time pressure distribution when a human subject touches the arms of a nursing-care robot. The dataset consists of information from 50 subjects who performed a total of 24,000 touch actions. Furthermore, the details of the dataset are described, the data are preliminarily analyzed, and the validity of the collected information is tested through a convolutional neural network LeNet-5 classifying different types of touch actions. We believe that the TacAct dataset would be more than beneficial for the community of human interactive robots to understand the tactile profile under various circumstances.
Submission history
From: Peng Wang [view email][v1] Mon, 9 Aug 2021 02:02:17 UTC (1,240 KB)
[v2] Wed, 11 Aug 2021 12:25:15 UTC (1,289 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.