Computer Science > Robotics
[Submitted on 7 Jul 2021 (v1), last revised 11 Oct 2021 (this version, v4)]
Title:Deep Learning for Embodied Vision Navigation: A Survey
View PDFAbstract:"Embodied visual navigation" problem requires an agent to navigate in a 3D environment mainly rely on its first-person observation. This problem has attracted rising attention in recent years due to its wide application in autonomous driving, vacuum cleaner, and rescue robot. A navigation agent is supposed to have various intelligent skills, such as visual perceiving, mapping, planning, exploring and reasoning, etc. Building such an agent that observes, thinks, and acts is a key to real intelligence. The remarkable learning ability of deep learning methods empowered the agents to accomplish embodied visual navigation tasks. Despite this, embodied visual navigation is still in its infancy since a lot of advanced skills are required, including perceiving partially observed visual input, exploring unseen areas, memorizing and modeling seen scenarios, understanding cross-modal instructions, and adapting to a new environment, etc. Recently, embodied visual navigation has attracted rising attention of the community, and numerous works has been proposed to learn these skills. This paper attempts to establish an outline of the current works in the field of embodied visual navigation by providing a comprehensive literature survey. We summarize the benchmarks and metrics, review different methods, analysis the challenges, and highlight the state-of-the-art methods. Finally, we discuss unresolved challenges in the field of embodied visual navigation and give promising directions in pursuing future research.
Submission history
From: Xiaojun Chang [view email][v1] Wed, 7 Jul 2021 12:09:04 UTC (23,854 KB)
[v2] Sat, 4 Sep 2021 02:43:59 UTC (4,495 KB)
[v3] Thu, 7 Oct 2021 23:32:42 UTC (30,229 KB)
[v4] Mon, 11 Oct 2021 08:48:18 UTC (30,121 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.