Computer Science > Robotics
[Submitted on 10 Aug 2021 (v1), last revised 23 Aug 2021 (this version, v2)]
Title:An experimental study of two predictive reinforcement learning methods and comparison with model-predictive control
View PDFAbstract:Reinforcement learning (RL) has been successfully used in various simulations and computer games. Industry-related applications, such as autonomous mobile robot motion control, are somewhat challenging for RL up to date though. This paper presents an experimental evaluation of predictive RL controllers for optimal mobile robot motion control. As a baseline for comparison, model-predictive control (MPC) is used. Two RL methods are tested: a roll-out Q-learning, which may be considered as MPC with terminal cost being a Q-function approximation, and a so-called stacked Q-learning, which in turn is like MPC with the running cost substituted for a Q-function approximation. The experimental foundation is a mobile robot with a differential drive (Robotis Turtlebot3). Experimental results showed that both RL methods beat the baseline in terms of the accumulated cost, whereas the stacked variant performed best. Provided the series of previous works on stacked Q-learning, this particular study supports the idea that MPC with a running cost adaptation inspired by Q-learning possesses potential of performance boost while retaining the nice properties of MPC.
Submission history
From: Pavel Osinenko [view email][v1] Tue, 10 Aug 2021 18:17:35 UTC (1,556 KB)
[v2] Mon, 23 Aug 2021 19:36:44 UTC (1,556 KB)
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.