Mathematics > Optimization and Control
[Submitted on 15 Aug 2021]
Title:Dissipative probability vector fields and generation of evolution semigroups in Wasserstein spaces
View PDFAbstract:We introduce and investigate a notion of multivalued $\lambda$-dissipative probability vector field (MPVF) in the Wasserstein space $\mathcal{P}_2(\mathsf X)$ of Borel probability measures on a Hilbert space $\mathsf X$. Taking inspiration from the theory of dissipative operators in Hilbert spaces and of Wasserstein gradient flows of geodesically convex functionals, we study local and global well posedness of evolution equations driven by dissipative MPVFs. Our approach is based on a measure-theoretic version of the Explicit Euler scheme, for which we prove novel convergence results with optimal error estimates under an abstract CFL stability condition, which do not rely on compactness arguments and also hold when $\mathsf X$ has infinite dimension. We characterize the limit solutions by a suitable Evolution Variational Inequality (EVI), inspired by the Bénilan notion of integral solutions to dissipative evolutions in Banach spaces. Existence, uniqueness and stability of EVI solutions are then obtained under quite general assumptions, leading to the generation of a semigroup of nonlinear contractions.
Submission history
From: Giacomo Enrico Sodini [view email][v1] Sun, 15 Aug 2021 12:32:00 UTC (80 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.