Computer Science > Robotics
[Submitted on 18 Aug 2021 (v1), last revised 29 Oct 2023 (this version, v4)]
Title:Optimised Informed RRTs for Mobile Robot Path Planning
View PDFAbstract:Path planners based on basic rapidly-exploring random trees (RRTs) are quick and efficient, and thus favourable for real-time robot path planning, but are almost-surely suboptimal. In contrast, the optimal RRT (RRT*) converges to the optimal solution, but may be expensive in practice. Recent work has focused on accelerating the RRT*'s convergence rate. The most successful strategies are informed sampling, path optimisation, and a combination thereof. However, informed sampling and its combination with path optimisation have not been applied to the basic RRT. Moreover, while a number of path optimisers can be used to accelerate the convergence rate, a comparison of their effectiveness is lacking. This paper investigates the use of informed sampling and path optimisation to accelerate planners based on both the basic RRT and the RRT*, resulting in a family of algorithms known as optimised informed RRTs. We apply different path optimisers and compare their effectiveness. The goal is to ascertain if applying informed sampling and path optimisation can help the quick, though almost-surely suboptimal, path planners based on the basic RRT attain comparable or better performance than RRT*-based planners. Analyses show that RRT-based optimised informed RRTs do attain better performance than their RRT*-based counterparts, both when planning time is limited and when there is more planning time.
Submission history
From: Bongani Bright Maseko [view email][v1] Wed, 18 Aug 2021 08:58:47 UTC (1,492 KB)
[v2] Mon, 30 Aug 2021 09:28:20 UTC (1,492 KB)
[v3] Fri, 31 Dec 2021 23:24:10 UTC (1,492 KB)
[v4] Sun, 29 Oct 2023 20:22:13 UTC (1,492 KB)
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.