Computer Science > Robotics
[Submitted on 20 Aug 2021 (v1), last revised 20 May 2024 (this version, v5)]
Title:OpenStreetMap-based Autonomous Navigation With LiDAR Naive-Valley-Path Obstacle Avoidance
View PDF HTML (experimental)Abstract:OpenStreetMaps (OSM) is currently studied as the environment representation for autonomous navigation. It provides advantages such as global consistency, a heavy-less map construction process, and a wide variety of road information publicly available. However, the location of this information is usually not very accurate locally.
In this paper, we present a complete autonomous navigation pipeline using OSM information as environment representation for global planning. To avoid the flaw of local low-accuracy, we offer the novel LiDAR-based Naive-Valley-Path (NVP) method that exploits the concept of "valley" areas to infer the local path always furthest from obstacles. This behavior allows navigation always through the center of trafficable areas following the road's shape independently of OSM error. Furthermore, NVP is a naive method that is highly sample-time-efficient. This time efficiency also enables obstacle avoidance, even for dynamic objects.
We demonstrate the system's robustness in our research platform BLUE, driving autonomously across the University of Alicante Scientific Park for more than 20 km with 0.24 meters of average error against the road's center with a 19.8 ms of average sample time. Our vehicle avoids static obstacles in the road and even dynamic ones, such as vehicles and pedestrians.
Submission history
From: Miguel Ángel Muñoz-Bañón Muñoz-Bañón [view email][v1] Fri, 20 Aug 2021 11:27:52 UTC (2,061 KB)
[v2] Thu, 2 Dec 2021 18:51:12 UTC (12,852 KB)
[v3] Wed, 26 Jan 2022 11:32:03 UTC (5,216 KB)
[v4] Thu, 30 Jun 2022 09:38:47 UTC (9,227 KB)
[v5] Mon, 20 May 2024 08:46:45 UTC (9,227 KB)
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.