Computer Science > Information Theory
[Submitted on 23 Aug 2021]
Title:CS-Based CSIT Estimation for Downlink Pilot Decontamination in Multi-Cell FDD Massive MIMO
View PDFAbstract:Efficient channel state information at transmitter (CSIT) for frequency division duplex (FDD) massive MIMO can facilitate its backward compatibility with existing FDD cellular networks. To date, several CSIT estimation schemes have been proposed for FDD single-cell massive MIMO systems, but they fail to consider inter-cell-interference (ICI) and suffer from downlink pilot contamination in multi-cell scenario. To solve this problem, this paper proposes a compressive sensing (CS)-based CSIT estimation scheme to combat ICI in FDD multi-cell massive MIMO systems. Specifically, angle-domain massive MIMO channels exhibit the common sparsity over different subcarriers, and such sparsity is partially shared by adjacent users. By exploiting these sparsity properties, we design the pilot signal and the associated channel estimation algorithm under the framework of CS theory, where the channels associated with multiple adjacent BSs can be reliably estimated with low training overhead for downlink pilot decontamination. Simulation results verify the good downlink pilot decontamination performance of the proposed solution compared to its conventional counterparts in multi-cell FDD massive MIMO.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.