Computer Science > Robotics
[Submitted on 18 Aug 2021 (v1), last revised 24 Aug 2021 (this version, v2)]
Title:Automatic Centralized Control of Underactuated Large-scale Multi-robot Systems using a Generalized Coordinate Transformation
View PDFAbstract:Controlling large-scale particle or robot systems is challenging because of their high dimensionality. We use a centralized stochastic approach that allows for optimal control at the cost of a central element instead of a decentralized approach. Previous works are often restricted to the assumption of fully actuated robots. Here we propose an approach for underactuated robots that allows for energy-efficient control of the robot system. We consider a simple task of gathering the robots (minimizing positional variance) and steering them towards a goal point within a bounded area without obstacles. We make two main contributions. First, we present a generalized coordinate transformation for underactuated robots, whose physical properties should be considered. We choose Euler- Lagrange systems that describe a large class of robot systems. Second, we propose an optimal control mechanism with the prime objective of energy efficiency. We show the feasibility of our approach in numerical simulations and robot simulations.
Submission history
From: Babak Salamat [view email][v1] Wed, 18 Aug 2021 08:38:30 UTC (787 KB)
[v2] Tue, 24 Aug 2021 17:00:30 UTC (1,133 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.