Computer Science > Cryptography and Security
[Submitted on 24 Aug 2021]
Title:Online Dictionary Learning Based Fault and Cyber Attack Detection for Power Systems
View PDFAbstract:The emerging wide area monitoring systems (WAMS) have brought significant improvements in electric grids' situational awareness. However, the newly introduced system can potentially increase the risk of cyber-attacks, which may be disguised as normal physical disturbances. This paper deals with the event and intrusion detection problem by leveraging a stream data mining classifier (Hoeffding adaptive tree) with semi-supervised learning techniques to distinguish cyber-attacks from regular system perturbations accurately. First, our proposed approach builds a dictionary by learning higher-level features from unlabeled data. Then, the labeled data are represented as sparse linear combinations of learned dictionary atoms. We capitalize on those sparse codes to train the online classifier along with efficient change detectors. We conduct numerical experiments with industrial control systems cyber-attack datasets. We consider five different scenarios: short-circuit faults, line maintenance, remote tripping command injection, relay setting change, as well as false data injection. The data are generated based on a modified IEEE 9-bus system. Simulation results show that our proposed approach outperforms the state-of-the-art method.
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.