Computer Science > Robotics
[Submitted on 29 Aug 2021]
Title:Risk Assessment, Prediction, and Avoidance of Collision in Autonomous Drones
View PDFAbstract:Unmanned Aerial Vehicles (UAVs), in particular Drones, have gained significant importance in diverse sectors, mainly military uses. Recently, we can see a growth in acceptance of autonomous UAVs in civilian spaces as well. However, there is still a long way to go before drones are capable enough to be safely used without human surveillance. A lot of subsystems and components are involved in taking care of position estimation, route planning, software/data security, and collision avoidance to have autonomous drones that fly in civilian spaces without being harmful to themselves, other UAVs, environment, or humans. The ultimate goal of this research is to advance collision avoidance and mitigation techniques through quantitative safety risk assessment. To this end, it is required to identify the most relevant faults/failures/threats that can happen during a drone's flight/mission. The analysis of historical data is also a relevant instrument to help to characterize the most frequent and relevant issues in UAV systems, which may cause safety hazards. Then we need to estimate their impact quantitatively, by using fault injection techniques. Knowing the growing interests in UAVs and their huge potential for future commercial applications, the expected outcome of this work will be helpful to researchers for future related research studies. Furthermore, we envisage the utilization of expected results by companies to develop safer drone applications, and by air traffic controllers for building failure prediction and collision avoidance solutions.
Submission history
From: Anamta Khan [view email] [via Marcello Cinque as proxy][v1] Sun, 29 Aug 2021 07:48:53 UTC (1,886 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.