Electrical Engineering and Systems Science > Systems and Control
[Submitted on 29 Aug 2021]
Title:Mean-Square Input-Output Stability and Stabilizability of a Networked Control System with Random Channel Induced Delays
View PDFAbstract:This work mainly investigates the mean-square stability and stabilizability for a single-input single-output networked linear feedback system. The control signal in the networked system is transmitted over an unreliable channel. In this unreliable channel, the data transmission times, referred to as channel induced delays, are random values and the transmitted data could also be dropout with certain probability. The channel induced delays and packet dropout are modeled by an independent and identically distributed stochastic process with a fixed probability mass function. At the channel terminal, a linear combination of data received at one sampling time is applied to the plant of the networked feedback system as a new control signal. To describe the uncertainty in the channel, a concept so called frequency response of variation is introduced for the unreliable channel. With the given linear receiving strategy, a mean-square stability criterion is established in terms of the frequency response of variation of the unreliable channel for the networked feedback system. It is shown by this criterion that the mean-square stability is determined by the interaction between the frequency response of variation and the nominal feedback system. The role played by the random channel induced delays is the same as that played by a colored additive noise in an additive noise channel with a signal-to-noise ratio constraint. Moreover, the mean-square input-output stabilizability via output feedback is studied for the networked system. When the plant in the networked feedback system is minimum phase, an analytic necessary and sufficient condition is presented for its mean-square input-output stabilizability. It turns out that the stabilizability is only determined by the interaction between the frequency response of variation of the channel and unstable poles of the plant.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.