Computer Science > Information Retrieval
[Submitted on 18 Aug 2021 (v1), last revised 20 Jun 2022 (this version, v2)]
Title:Practical and Secure Federated Recommendation with Personalized Masks
View PDFAbstract:Federated recommendation addresses the data silo and privacy problems altogether for recommender systems. Current federated recommender systems mainly utilize cryptographic or obfuscation methods to protect the original ratings from leakage. However, the former comes with extra communication and computation costs, and the latter damages model accuracy. Neither of them could simultaneously satisfy the real-time feedback and accurate personalization requirements of recommender systems. In this paper, we proposed federated masked matrix factorization (FedMMF) to protect the data privacy in federated recommender systems without sacrificing efficiency and effectiveness. In more details, we introduce the new idea of personalized mask generated only from local data and apply it in FedMMF. On the one hand, personalized mask offers protection for participants' private data without effectiveness loss. On the other hand, combined with the adaptive secure aggregation protocol, personalized mask could further improve efficiency. Theoretically, we provide security analysis for personalized mask. Empirically, we also show the superiority of the designed model on different real-world data sets.
Submission history
From: Liu Yang [view email][v1] Wed, 18 Aug 2021 07:12:23 UTC (534 KB)
[v2] Mon, 20 Jun 2022 09:40:16 UTC (1,406 KB)
Current browse context:
cs.IR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.