Computer Science > Machine Learning
[Submitted on 21 Sep 2021 (v1), last revised 5 Apr 2022 (this version, v2)]
Title:Recurrent Neural Networks for Partially Observed Dynamical Systems
View PDFAbstract:Complex nonlinear dynamics are ubiquitous in many fields. Moreover, we rarely have access to all of the relevant state variables governing the dynamics. Delay embedding allows us, in principle, to account for unobserved state variables. Here we provide an algebraic approach to delay embedding that permits explicit approximation of error. We also provide the asymptotic dependence of the first order approximation error on the system size. More importantly, this formulation of delay embedding can be directly implemented using a Recurrent Neural Network (RNN). This observation expands the interpretability of both delay embedding and RNN and facilitates principled incorporation of structure and other constraints into these approaches.
Submission history
From: Uttam Bhat [view email][v1] Tue, 21 Sep 2021 20:15:20 UTC (183 KB)
[v2] Tue, 5 Apr 2022 01:36:40 UTC (157 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.