High Energy Physics - Lattice
[Submitted on 2 Nov 2021]
Title:Role of inhomogeneities in the flattening of the quantum effective potential
View PDFAbstract:We investigate the role of inhomogeneous field configurations in systems with a spontaneously broken continuous global symmetry. Spontaneous breaking is usually defined as a specific double limit, first infinite volume at finite explicit breaking sources, which are then extrapolated to zero. We consider a different approach in which the order parameter is constrained under the path integral, which we simulate using lattice Monte Carlo techniques. In this way we access the flat region of the effective potential and we show that inhomogeneous configurations are dominant there. We topologically classify the important configurations and measure the excess energy stored in the inhomogeneities allowing for the definition of a generalized differential surface tension. We show that this contribution becomes negligible at large volumes restoring the flatness of the effective potential in the thermodynamic limit.
Current browse context:
hep-lat
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.