Mathematics > Geometric Topology
[Submitted on 3 Feb 2022]
Title:Classification of doubly periodic untwisted (p,q)-weaves by their crossing number
View PDFAbstract:A weave is the lift to the Euclidean thickened plane of a set of infinitely many planar crossed geodesics, that can be characterized by a number of sets of threads describing the organization of the non-intersecting curves, together with a set of crossing sequences representing the entanglements. In this paper, the classification of a specific class of doubly periodic weaves, called untwisted (p,q)-weaves, is done by their crossing number, which is the minimum number of crossings that can possibly be found in a unit cell of its infinite weaving diagrams. Such a diagram can be considered as a particular type of quadrivalent periodic planar graph with an over or under information at each vertex, whose unit cell corresponds to a link diagram in a thickened torus. Moreover, considering that a weave is not uniquely defined by its sets of threads and its crossing sequences, we also specify the notion of equivalence classes by introducing a new parameter, called crossing matrix.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.