Mathematics > Statistics Theory
[Submitted on 3 Feb 2022]
Title:Misspecification Tests on Models of Random Graphs
View PDFAbstract:A class of models that have been widely used are the exponential random graph (ERG) models, which form a comprehensive family of models that include independent and dyadic edge models, Markov random graphs, and many other graph distributions, in addition to allow the inclusion of covariates that can lead to a better fit of the model.
Another increasingly popular class of models in statistical network analysis are stochastic block models (SBMs). They can be used for the purpose of grouping nodes into communities or discovering and analyzing a latent structure of a network. The stochastic block model is a generative model for random graphs that tends to produce graphs containing subsets of nodes characterized by being connected to each other, called communities.
Many researchers from various areas have been using computational tools to adjust these models without, however, analyzing their suitability for the data of the networks they are studying. The complexity involved in the estimation process and in the goodness-of-fit verification methodologies for these models can be factors that make the analysis of adequacy difficult and a possible discard of one model in favor of another.
And it is clear that the results obtained through an inappropriate model can lead the researcher to very wrong conclusions about the phenomenon studied.
The purpose of this work is to present a simple methodology, based on Hypothesis Tests, to verify if there is a model specification error for these two cases widely used in the literature to represent complex networks: the ERGM and the SBM. We believe that this tool can be very useful for those who want to use these models in a more careful way, verifying beforehand if the models are suitable for the data under study.
Submission history
From: Denise Duarte Scarpa Magalhaes Alves [view email][v1] Thu, 3 Feb 2022 20:09:29 UTC (25 KB)
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.