Mathematics > Optimization and Control
[Submitted on 3 Feb 2022]
Title:Data-Driven Optimal Control via Linear Transfer Operators: A Convex Approach
View PDFAbstract:This paper is concerned with data-driven optimal control of nonlinear systems. We present a convex formulation to the optimal control problem (OCP) with a discounted cost function. We consider OCP with both positive and negative discount factor. The convex approach relies on lifting nonlinear system dynamics in the space of densities using the linear Perron-Frobenius (P-F) operator. This lifting leads to an infinite-dimensional convex optimization formulation of the optimal control problem. The data-driven approximation of the optimization problem relies on the approximation of the Koopman operator using the polynomial basis function. We write the approximate finite-dimensional optimization problem as a polynomial optimization which is then solved efficiently using a sum-of-squares-based optimization framework. Simulation results are presented to demonstrate the efficacy of the developed data-driven optimal control framework.
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.