Mathematics > Analysis of PDEs
[Submitted on 3 Feb 2022]
Title:Existence results for a class of quasilinear Schrödinger equations with singular or vanishing potentials
View PDFAbstract:Given two continuous functions $V\left(r \right)\geq 0$ and $K\left(r\right)> 0$ ($r>0$), which may be singular or vanishing at zero as well as at infinity, we study the quasilinear elliptic equation \[ -\Delta w+ V\left( \left| x\right| \right) w - w \left( \Delta w^2 \right)= K(|x|) g(w) \quad \text{in }\mathbb{R}^{N}, \] where $N\geq3$. To study this problem we apply a change of variables $w=f(u)$, already used by several authors, and find existence results for nonnegative solutions by the application of variational methods. The main features of our results are that they do not require any compatibility between how the potentials $V$ and $K$ behave at the origin and at infinity, and that they essentially rely on power type estimates of the relative growth of $V$ and $K$, not of the potentials separately. Our solutions satisfy a weak formulations of the above equation, but we are able to prove that they are in fact classical solutions in $\mathbb{R}^{N} \backslash \{ 0\}$. To apply variational methods, we have to study the compactness of the embedding of a suitable function space into the sum of Lebesgue spaces $L_{K}^{q_{1}}+L_{K}^{q_{2}}$, and thus into $L_{K}^{q}$ ($=L_{K}^{q}+L_{K}^{q}$) as a particular case.
The nonlinearity $g$ has a double-power behavior, whose standard example is $g(t) = \min \{ t^{q_1 -1}, t^{q_2 -1} \}$, recovering the usual case of a single-power behavior when $q_1 = q_2$.
Current browse context:
math.AP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.